

INDIAN SCHOOL AL WADI AL KABIR CLASS XI <u>PHYSICS</u> ASSESSMENT 1 (2022 - 23) <u>ANSWER KEY</u>

Q.NO.	ANSWERS	MARKS
1	b) Pressure if $a = 1, b = -1, c = -2$	1
2	d) 45°	1
3	c) Parabola or hyperbola	1
4	d) 0.4 m	1
5	a) $[MLT^{-1}]$ and $[MLT^{-4}]$	1
6	b) 1200 litre	1
7	d) 4 cm/s ²	1
8	d) zero	1
9	b) (2,2)	1
10	a) the light body	1
11	c) 45°	1
12	a) is zero	1
13	c) 40 N	1
14	b) lift is moving up with an acceleration g	1
15	b) Zero Torque	1
16	b) Both A and R are true and R is NOT the correct explanation of A	1
17	c) A is true but R is false	1
18	a) Both A and R are true and R is the correct explanation of A	1
19	Statement	1
	As moment of inertia decreases, angular velocity increases so that	1
20	angular momentum to remain constant. $T_{-} m_{2} = 20 (10) = 200 \text{ N}$	1
20	$I = IIIg = 50 (10) = 500 \text{ N}$ $T_{\text{mg}} = m_{\theta} (climbing up)$	⁷ /2 1/2
	a - T - mg/m	/2
	a=300-25(10)/25	1/2
	$a=2 \text{ m/s}^2$	<i>,</i> –
		1⁄2
	OR	
	a = net force/total mass	1⁄2
	$a=(m_A+m_B-m_C)g/m_A+m_B+m_C$	1⁄2
	a = (4+1-3)10/4+1+3	
	$a=20/8=2.5 \text{ m/s}^2$	1/2
	$I_1 = m_c g$ T = -2(10) = 20 N	1/2
	$1_1 = 3(10) = 30$ N	
21	$c = ut + \frac{1}{2}at^2$	1/2
	$S = ut + \frac{1}{2}ut$	/ _
	$-x = \frac{1}{2}(-9.8)t^2$	1⁄2
	$x = 4.9t^2$ 1	
	$100 - x = 50t + \frac{1}{2}(-9.8)t^2$	1 /
	Sub 1 and simplifying	1/2
	t = 2 s	14
	x=19.6 m from the top or 80.4 m from the bottom	72

22	Diagram or consideration	1/2
	$ \begin{array}{l} F \propto -x \\ F = -kx \\ \end{array} \dots (1) $	
	$W_{\rm s} = \int_{-\infty}^{\infty} F dx$	1/2
	$\int_{0}^{x_{m}} \dots (2)$	1/2
	$W_s = -\int_0 kx dx \dots (3)$	
	$W = -\nu \left[\frac{x^2}{x}\right]^{x_m}$	
	$W_s = -\frac{1}{2}kx_m^2$	
	$W_E = \frac{1}{2}kx_m^2 \qquad \dots (4)$	
	This work done is stored as the elastic potential energy 'U' of the	
	spring.	1/2
	$U = \frac{1}{2}kx^2$	
	Statement	
	Diagram or consideration	1/2
		1/2
	$v^2 - u^2 = 2as$	/2
	Multiplying both the sides by $1/211$, we get $1 \dots 2^{-1} \dots 2^{-1}$	
	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = mas$	1/2
	By Newton's second law, ma = F	
	Therefore $\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = F x s = W$	1/2
	Kf - Ki = W	
22	Consideration or diagram	14
23	$As y^2 - y^2 = 2as$	72
	$v^2 - 0 = 2as$	1/2
	$v^2 - 0 = 2as$ $a = v^2/2s$	1⁄2
	$v^2-0 = 2as$ $a = v^2/2s$ According to Newton's second law of motion	1⁄2
	$v^2-0 = 2as$ $a = v^2/2s$ According to Newton's second law of motion F = ma	1/2 1/2
	$v^2-0 = 2as$ $a = v^2/2s$ According to Newton's second law of motion F = ma Work done, $W = F x s = ma x s =$	1/2 1/2
	$v^2-0 = 2as$ $a = v^2/2s$ According to Newton's second law of motion F = ma Work done, $W = F x s = ma x s =$ $W = mx \frac{v^2}{2s} x s = \frac{1}{2}mv^2$	1/2 1/2
	$v^2-0 = 2as$ $a = v^2/2s$ According to Newton's second law of motion F = ma Work done, $W = F x s = ma x s =$ $W = mx \frac{v^2}{2s} x s = \frac{1}{2}mv^2$ This work done appears as kinetic energy K of the body.	1/2 1/2 1/2
	$v^2-0 = 2as$ $a = v^2/2s$ According to Newton's second law of motion F = ma Work done, $W = F x s = ma x s =$ $W = mx \frac{v^2}{2s} x s = \frac{1}{2}mv^2$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^2$	1/2 1/2 1/2
	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$	1/2 1/2 1/2
24	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t	1/2 1/2 1/2 1/2
24	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t S=r\Theta V=rQ/t	1/2 1/2 1/2 1/2 1/2 1/2
24	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t S=r\Theta V=r\Theta/t $\Theta/t = \omega$	$\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$
24	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t S=r\Theta V=r\Theta/t $\Theta/t = \omega$ V=r ω	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
24	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t S=r\Theta V=r\Theta/t $\Theta/t = \omega$ V=r ω	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
24	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t S=r\Theta V=r\Theta/t $\Theta/t = \omega$ V=r ω Net force(vector sum) acting on the system is zero	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} $
24	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t S=r\Theta V=r\Theta/t $\Theta/t = \omega$ V=r ω Net force(vector sum) acting on the system is zero And net torque (vector sum) acting on the system is zero	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} $
24	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t S=r\Theta V=r\Theta/t $\Theta/t = \omega$ V=r ω Net force(vector sum) acting on the system is zero And net torque (vector sum) acting on the system is zero The point of contact of the ladder with the ground is the point about	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} $
24	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t S=r\Theta V=r\Theta V=r\Theta Net force(vector sum) acting on the system is zero And net torque (vector sum) acting on the system is zero The point of contact of the ladder with the ground is the point about which the ladder can rotate. When the labourer is at the top of the ladder the lawer arm of force is lawer as the turning of the lawer	$\begin{array}{c c} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{array}$
24	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion $F = ma$ Work done, $W = F x s = ma x s =$ $W = mx \frac{v^{2}}{2s} x s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t S=r\Theta V=r\Theta/t $\Theta/t = \omega$ v=r ω Net force(vector sum) acting on the system is zero And net torque (vector sum) acting on the system is zero The point of contact of the ladder with the ground is the point about which the ladder can rotate. When the labourer is at the top of the ladder, the lever arm of force is large, so the turning effect can be large. Diagram	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} $
24 25 26	$v^{2}-0 = 2as$ $a = v^{2}/2s$ According to Newton's second law of motion F = ma $Work \ done \ , W = F x \ s = ma \ x \ s =$ $W = mx \frac{v^{2}}{2s} \ x \ s = \frac{1}{2}mv^{2}$ This work done appears as kinetic energy K of the body. $K = \frac{1}{2}mv^{2}$ V=s/t S=r Θ V= r Θ /t Θ /t = ω v=r ω Net force(vector sum) acting on the system is zero And net torque (vector sum) acting on the system is zero The point of contact of the ladder with the ground is the point about which the ladder can rotate. When the labourer is at the top of the ladder, the lever arm of force is large, so the turning effect can be large. Diagram Writing the v components of 2^{nd} equation of motion	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Substitution and Final expression for maximum height	1/2
	Writing the x components of 2 nd equation of motion	1/2
	Substitution for time	
	Final expression for range	1/2
27	Graph	1
	Mentioning area under v-t graph gives displacement	1/2
	Writing the equation for area	1/2
	Substitution and rearranging	1/2
	Final expression	1/2

28	Statement	1
	Diagram or consideration	1/2
	$F\alpha$ RATE OF CHANGE OF MOMENTUM	1/2
	F = K RATE OF CHANGE OF MOMENTUM	
	$\mathbf{E} = \mathbf{V} dp$	
	$\Gamma = K \frac{1}{dt}$	1/2
		1/2
	F = K m a, If K=1	/ _
	F = ma	
	OR	
	a) To decrease the effect of impulse, spring increases the time for	1
	which a large force acts	1
	b) Due to inertia of motion	1
	c) Inertia of rest	1
		1
29	36 km/h = 10 m/s	1⁄2
	$\frac{1}{2}kx^2 = \frac{1}{2}mv^2$	1⁄2
	2^{2} $\frac{2}{\sqrt{2}}$	1⁄2
	$x = \sqrt{\frac{mv^2}{r}}$	1⁄2
	∇k	1⁄2
	$\Gamma = K \Lambda$ $F = 60 \times 10^3 \text{ N}$	1⁄2
	$\Gamma = 00 \times 10^{-10}$ N	
	$W_{-} ES_{-} (maxin \Theta) a$	
	W = -FS = -(Higshid) S	
	$W = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$	
	$-(\text{mgsin}\Theta)$ s = $-\frac{1}{2}mu^2$	
	S = 22.95 m or 22.5 m	
	5 -22.75 m 6r 22.5 m	
30	$\vec{\mathbf{I}} - (\vec{\mathbf{r}} \times \vec{\mathbf{n}})$	1/2
20	$L = (I \land P)$ Differentiating both sides	/ =
	$d\vec{l}$ $d\vec{r} \times \vec{s}$	1/2
	$\frac{dL}{dt} = \frac{d(l \times p)}{dt}$, 2
	$ \stackrel{\text{di}}{\rightarrow} \vec{dr} \vec{r} \vec{d\vec{p}} $	1/2
	$- P \frac{dt}{dt} + 1 \frac{dt}{dt} \rightarrow$	12
	$= \vec{v} \times m \vec{v} + \vec{r} \times f$	1/2
	$= \vec{r} \times \vec{f} = \vec{\tau} (\because \vec{v} \times \vec{v} = 0)$	1/2
	dL =	1/2
	$\frac{1}{dt} = t$	12
1		1

	Thus, rate of change of angular moment of a particle in rotational motion		
	provides torque acting on it.		
31	a) Definition		1
	Diagram with vectors mentioned	wine also	1/2 1/
	Mentioning the concept of similar t	riangles	1/2 1/-
	Equation for ΔV	1 /-	⁷ /2 1/2
	expression for 'a'	v = s/c	72
	ii)	a = v ² /r	
	b) Ca	lculation: From formula (I),	1⁄2
	50	$0 = \frac{2\pi r}{r}$	
		-40 r = 50×40	
		$1 - \frac{2\pi}{1000}$	
		$r = \frac{1000}{\pi}$ cm	
	Fr	rom formula (ii),	1/2
	а	$=\frac{v^2}{r}=\frac{50^2}{1000/r}$	
		$r = 1000/\pi$	
		$a = \frac{1}{2} = 7.65 \text{ m/s}^{-1}$	
	OR		
	Diagram or consideration		1
	X components equation and equation for ti	me	1/2
	Y components equation and substitution		1/2+1/2
	$y=ax+bx^2$ equation and mention the terms a	a and b	1⁄2
	As, $H = \frac{u^2 \sin^2 \theta}{2\pi}$ $\therefore 20 = \frac{(20\sqrt{2})^2 \sin^2}{2\pi}$	· 0	1/2
	$2 g = 2 \times 10^{-1}$		1/2
	$\sin^2 \theta = \frac{1}{800} = \frac{1}{2}$		72
	or $\sin \theta = \frac{1}{\sqrt{2}} = \sin 45^\circ$ or $\theta = 45^\circ$		1/
	Horizontal range = $\frac{u^2 \sin 2\theta}{g}$		1/2
	$=\frac{(20\sqrt{2})^2\sin 2\times 45^\circ}{10}=\frac{800\times 1}{10}=80 \text{ m}$		1/2
			1/
52	Diagram or consideration $m_1u_1 + m_2u_2 = m_1u_1 + m_2u_2$		1/2 1/2
	$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$		72
	$\Rightarrow m_1(u_1 - u_1) = m_2(u_2 - u_2)$		
	$1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$		
	$\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$		1/2
	$m_1 u_1^2 + m_2 u_2^2 = m_1 v_1^2 + m_2 v_2^2$		
	$\Rightarrow m_1 u_1^2 - m_1 v_1^2 = m_2 v_2^2 - m_2 u_2^2$		
	$\Rightarrow m_1(u_1^2 - v_1^2) = m_2(v_2^2 - u_2^2)$		
	$\Rightarrow m_1(u_1 - v_1)(u_1 + v_1)$		
	$= m_2(v_2 - u_2)(u_2 + v_2) \dots (2)$		
	$(u_1 + v_1) = (v_2 + u_2) $ (3)		1⁄2

	 a) Statement Consideration or diagram Proof (Any method) v₂ = - m₁v₁/m₂ = - (10 × 10⁻³kg)(800m/s)/(100kg) = -0.08m/s b) As mass of the bullet is negligible as compared to (rifle ++ man), ∴ Velocity acquired after 10 shots =10v₂=0.8m/s b. The momentum is acquired by the rifleman is P=m₂v₂ =100×0.8 =80kgm/s This momentum is acquired in 10s, therefore the average force =△p/△t =80/5=16 N 	1
34	 (i) Directly (ii) Definition (iii)Any two methods, advantages or disadvantages 	1 mark each
35	 (i) Work done, W =FScos60° =20 X 20 X cos60°=20X 20 X 1/2 = 200J. (ii) Conditions for negative work done (iii)Definition of one joule dimensional formula [M¹ L² T⁻²] OR According to the definition: Work is done whenever the given conditions are satisfied. (ii) there is a displacement of the body caused by the applied force along the direction of the applied force. No displacement takes place in this case. So, work done by a centripetal force is always zero	1 1/2 1/2 1/2 1/2