	```INDIAN SCHOOL AL WADI AL KABIR CLASS XI PHYSICS ASSESSMENT 1 (2022-23) ANSWER KEY```	
Q.NO.	ANSWERS	MARKS
1	b) Pressure if $\mathrm{a}=1, \mathrm{~b}=-1, \mathrm{c}=-2$	1
2	d) $45^{\circ}$	1
3	c) Parabola or hyperbola	1
4	d) 0.4 m	1
5	a) $\left[\mathrm{MLT}^{-1}\right]$ and $\left[\mathrm{MLT}^{-4}\right]$	1
6	b) 1200 litre	1
7	d) $4 \mathrm{~cm} / \mathrm{s}^{2}$	1
8	d) zero	1
9	b) $(2,2)$	1
10	a) the light body	1
11	c) $45^{\circ}$	1
12	a) is zero	1
13	c) 40 N	1
14	b) lift is moving up with an acceleration g	1
15	b) Zero Torque	1
16	b) Both A and R are true and R is NOT the correct explanation of A	1
17	c) A is true but $R$ is false	1
18	a) Both A and R are true and R is the correct explanation of A	1
19	Statement   As moment of inertia decreases, angular velocity increases so that angular momentum to remain constant.	
20	$\begin{aligned} & \mathrm{T}=\mathrm{mg}=30(10)=300 \mathrm{~N} \\ & \mathrm{~T}-\mathrm{mg}=\mathrm{ma}(\text { climbing up) } \\ & \mathrm{a}=\mathrm{T}-\mathrm{mg} / \mathrm{m} \\ & \mathrm{a}=300-25(10) / 25 \\ & \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$   OR   $\mathrm{a}=$ net force/total mass $\begin{aligned} & \mathrm{a}=\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}-\mathrm{m}_{\mathrm{C}}\right) \mathrm{g} / \mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}+\mathrm{m}_{\mathrm{C}} \\ & \mathrm{a}=(4+1-3) 10 / 4+1+3 \\ & \mathrm{a}=20 / 8=2.5 \mathrm{~m} / \mathrm{s}^{2} \\ & \mathrm{~T}_{1}=\mathrm{m}_{\mathrm{c}} \mathrm{~g} \\ & \mathrm{~T}_{1}=3(10)=30 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
21	$\begin{aligned} & s=u t+\frac{1}{2} a t^{2} \\ & -x=\frac{1}{2}(-9.8) t^{2} \\ & x=4.9 t^{2}--------1 \\ & 100-x=50 t+\frac{1}{2}(-9.8) t^{2} \end{aligned}$   Sub 1 and simplifying $\mathrm{t}=2 \mathrm{~s}$   $\mathrm{x}=19.6 \mathrm{~m}$ from the top or 80.4 m from the bottom	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline 22 \& \begin{tabular}{l}
Diagram or consideration
\[
\begin{align*}
\& F \propto-x \\
\& F=-k x  \tag{1}\\
\& W_{S}=\int_{0}^{x_{m}} F d x  \tag{2}\\
\& W_{s}=-\int_{0}^{x_{m}} k x d x  \tag{3}\\
\& W_{S}=-k\left[\frac{x^{2}}{2}\right]_{0}^{x_{m}} \\
\& W_{S}=-\frac{1}{2} k x_{m}^{2} \\
\& W_{E}=\frac{1}{2} k x_{m}^{2}
\end{align*}
\] \\
This work done is stored as the elastic potential energy ' \(U\) ' of the spring.
\[
U=\frac{1}{2} k x^{2}
\] \\
OR \\
Statement \\
Diagram or consideration
\[
v^{2}-u^{2}=2 a s
\] \\
Multiplying both the sides by \(1 / 2 \mathrm{~m}\), we get
\[
\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=m a s
\] \\
By Newton's second law, ma \(=\mathrm{F}\) \\
Therefore
\[
\begin{aligned}
\& \frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=\mathrm{F} \times \mathrm{s}=\mathrm{W} \\
\& \mathrm{Kf}-\mathrm{Ki}=\mathrm{W}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \\

\hline 23 \& | Consideration or diagram |
| :--- |
| As $v^{2}-u^{2}=2 a s$ $\begin{gathered} v^{2}-0=2 a s \\ a=v^{2} / 2 s \end{gathered}$ |
| According to Newton's second law of motion $F=m a$ |
| Work done, $W=F x s=$ max $s=$ $W=m x \frac{v 2}{2 s} \times s=\frac{1}{2} m v^{2}$ |
| This work done appears as kinetic energy $K$ of the body. $K=\frac{1}{2} m v^{2}$ | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \\

\hline 24 \& $$
\begin{array}{|l}
\hline V=\mathrm{s} / \mathrm{t} \\
\mathrm{~S}=\mathrm{r} \Theta \\
\mathrm{~V}=\mathrm{r} \Theta / \mathrm{t} \\
\Theta / \mathrm{t}=\omega \\
\mathrm{v}=\mathrm{r} \omega
\end{array}
$$ \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \\

\hline 25 \& Net force(vector sum) acting on the system is zero And net torque (vector sum) acting on the system is zero The point of contact of the ladder with the ground is the point about which the ladder can rotate. When the labourer is at the top of the ladder, the lever arm of force is large, so theturning effect can be large. \& $$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$ \\

\hline 26 \& | Diagram |
| :--- |
| Writing the y components of $2^{\text {nd }}$ equation of motion Mentioning the expression for time | \& \[

$$
\begin{aligned}
& \hline 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& \hline
\end{aligned}
$$
\] \\

\hline
\end{tabular}

	Substitution and Final expression for maximum height                        Writing the x components of 2   nd equation of motion   Final expression for range	$1 / 2$
27	Graph	$1 / 2$
	Mentioning area under v-t graph gives displacement	1
	Writing the equation for area	
	Substitution and rearranging	$1 / 2$
	Final expression	$1 / 2$


28	Statement   Diagram or consideration   F $\alpha$ RATE OF CHANGE OF MOMENTUM   $\mathrm{F}=\mathrm{K}$ RATE OF CHANGE OF MOMENTUM $\mathrm{F}=\mathrm{K} \frac{d p}{d t}$ $\begin{aligned} & F=K m a, \quad \text { If } \mathrm{K}=1 \\ & \mathrm{~F}=\mathrm{ma} \end{aligned}$   OR   a) To decrease the effect of impulse, spring increases the time for which a large force acts   b) Due to inertia of motion   c) Inertia of rest	$\begin{aligned} & 1 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$   1   1   1
29	$\begin{aligned} & 36 \mathrm{~km} / \mathrm{h}=10 \mathrm{~m} / \mathrm{s} \\ & \frac{1}{2} k x^{2}=\frac{1}{2} m v^{2} \\ & x=\sqrt{\frac{m v^{2}}{k}} \\ & \mathrm{~F}=\mathrm{kx} \\ & \mathrm{~F}=60 \times 10^{3} \mathrm{~N} \\ & \text { OR } \\ & \mathrm{W}=-\mathrm{FS}=-(\mathrm{mgsin} \Theta) \mathrm{s} \\ & \mathrm{~W}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2} \\ & -(\mathrm{mg} \sin \Theta) \mathrm{s}=-\frac{1}{2} m u^{2} \\ & \mathrm{~S}=22.95 \mathrm{~m} \text { or } 22.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
30	$\overrightarrow{\mathrm{L}}=(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}})$   Differentiating both sides, $\begin{aligned} & \frac{\mathrm{d} \overrightarrow{\mathrm{~L}}}{\mathrm{dt}}=\frac{\mathrm{d}(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}})}{\mathrm{dt}} \\ & =\overrightarrow{\mathrm{p}} \frac{\mathrm{dr}}{\mathrm{dt}}+\overrightarrow{\mathrm{r}} \frac{\mathrm{~d} \overrightarrow{\mathrm{p}}}{\mathrm{dt}} \\ & =\overrightarrow{\mathrm{v}} \times \mathrm{m} \overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{f}} \\ & =\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{f}}=\vec{\tau} \quad(\therefore \overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{v}}=0) \\ & \frac{\mathrm{d} \overrightarrow{\mathrm{~L}}}{\mathrm{dt}}=\vec{\tau} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$

\begin{tabular}{|c|c|c|}
\hline \& Thus, rate of change of angular moment of a particle in rotational motion provides torque acting on it. \& \\
\hline 31 \& \begin{tabular}{l}
a) Definition \\
Diagram with vectors mentioned Mentioning the concept of similar triangles \\
Equation for \(\Delta \mathrm{v}\) \\
Substitution and getting the \\
i) \(V=s / t\) expression for ' \(a\) ' \\
ii) \(a=v^{2} / r\) \\
b) \\
Calculation: From formula (I),
\[
\begin{aligned}
\& 50=\frac{2 \pi r}{40} \\
\& \therefore r=\frac{50 \times 40}{2 \pi} \\
\& \therefore r=\frac{1000}{\pi} \mathrm{~cm}
\end{aligned}
\] \\
From formula (ii),
\[
\begin{aligned}
\& \mathrm{a}=\frac{v^{2}}{r}=\frac{50^{2}}{1000 / \pi} \\
\& \therefore \mathrm{a}=\frac{5 \pi}{2}=7.85 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\] \\
OR \\
Diagram or consideration \\
X components equation and equation for time \\
Y components equation and substitution \(y=a x+b x^{2}\) equation and mention the terms \(a\) and \(b\)
\[
\begin{aligned}
\& \text { As, } H=\frac{u^{2} \sin ^{2} \theta}{2 g} \therefore \quad 20=\frac{(20 \sqrt{2})^{2} \sin ^{2} \theta}{2 \times 10} \\
\& \text { or } 400=800 \sin ^{2} \theta \text { or } \sin ^{2} \theta=\frac{400}{800}=\frac{1}{2} \\
\& \text { or } \sin \theta=\frac{1}{\sqrt{2}}=\sin 45^{\circ} \text { or } \theta=45^{\circ} \\
\& \text { Horizontal range }=\frac{u^{2} \sin 2 \theta}{g} \\
\& =\frac{(20 \sqrt{2})^{2} \sin 2 \times 45^{\circ}}{10}=\frac{800 \times 1}{10}=80 \mathrm{~m}
\end{aligned}
\]
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$

1
$1 / 2$
$1 / 2+1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \\

\hline 32 \& $$
\begin{gather*}
\text { Diagram or consideration } \\
m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2} \\
m_{1} u_{1}-m_{1} v_{1}=m_{2} v_{2}-m_{2} u_{2} \\
\Rightarrow m_{1}\left(u_{1}-v_{1}\right)=m_{2}\left(v_{2}-u_{2}\right) \ldots(1) \\
\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2} \\
m_{1} u_{1}^{2}+m_{2} u_{2}^{2}=m_{1} v_{1}^{2}+m_{2} v_{2}^{2} \\
\Rightarrow m_{1} u_{1}^{2}-m_{1} v_{1}^{2}=m_{2} v_{2}^{2}-m_{2} u_{2}^{2} \\
\Rightarrow m_{1}\left(u_{1}^{2}-v_{1}^{2}\right)=m_{2}\left(v_{2}^{2}-u_{2}^{2}\right) \\
\Rightarrow m_{1}\left(u_{1}-v_{1}\right)\left(u_{1}+v_{1}\right) \\
\quad=m_{2}\left(v_{2}-u_{2}\right)\left(u_{2}+v_{2}\right) \ldots(2) \\
\left(u_{1}+v_{1}\right)=\left(v_{2}\right) \tag{3}
\end{gather*}
$$ \& $1 / 2$

$1 / 2$

$1 / 2$

$1 / 2$ \\
\hline
\end{tabular}

	$\begin{align*} & v_{1}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) u_{1}+\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right) u_{2} \\ & v_{2}=\left(\frac{m_{2}-m_{1}}{m_{2}+m_{1}}\right) u_{2}+\left(\frac{2 m_{1}}{m_{2}+m_{1}}\right) u_{1}  \tag{6}\\ & v_{1}=\frac{\left(m_{1}-m_{2}\right) u_{1}}{m_{1}+m_{2}}+\frac{2 m_{2} u_{2}}{m_{1}+m_{2}} \\ & \frac{u_{1}}{3}=\frac{\left(2-m_{2}\right)}{2+m_{2}} u_{1}+0 \\ & 2+m_{2}=6-3 m_{2} \\ & 4 m_{2}=4, m_{2}=1 \mathrm{~kg} \end{align*}$   OR   Statement   Consideration or diagram   Proving for each case $\begin{aligned} & P_{\text {output }}=\frac{W}{t}=\frac{\mathrm{mgh}}{\mathrm{t}}=\frac{\left(3 \times 10^{4} \mathrm{~kg}\right)\left(10 \mathrm{~ms}^{-2}\right)(40 \mathrm{~m})}{900 \mathrm{~s}} \\ & =\frac{4}{3} \times 10^{4} \mathrm{~W} \end{aligned}$   Efficiency, $\eta=\frac{P_{\text {output }}}{P_{\text {input }}}$ $\begin{aligned} & P_{\text {input }}=\frac{P_{\text {output }}}{\eta}=\frac{4 \times 10^{4}}{3 \times \frac{30}{100}}=\frac{4}{9} \times 10^{5} \\ & =44.4 \times 10^{3} \mathrm{~W}=44.4 \mathrm{~kW} \end{aligned}$	1   1 $\begin{gathered} 1 \\ 1 / 2 \\ 1 / 2+1 / 2+1 / 2 \end{gathered}$
33	Meaning or definition   Diagram $\begin{align*} N \cos \theta-m g-f \sin \theta & =0 \\ N \cos \theta & =m g+f \sin \theta \\ f & =\mu_{s} N \\ N \cos \theta & =m g+\mu_{s} N \sin \theta \\ \Sigma F_{x} & =f_{c} \\ N \sin \theta+f \cos \theta & =f_{c}  \tag{4}\\ N \sin \theta+\mu_{s} N \cos \theta & =f_{c}  \tag{5}\\ f_{c} & =\frac{m v^{2}}{R} \end{align*}$ $\begin{align*} N\left(\sin \theta+\mu_{s} \cos \theta\right) & =\frac{m v^{2}}{R}  \tag{6}\\ m g & =N\left(\cos \theta-\mu_{s} \sin \theta\right) \\ N & =\frac{m g}{\left(\cos \theta-\mu_{s} \sin \theta\right)} \ldots \tag{7} \end{align*}$ $\begin{aligned} & \frac{m g\left(\sin \theta+\mu_{s} \cos \theta\right)}{\left(\cos \theta-\mu_{s} \sin \theta\right)}=\frac{2 v_{m a x}^{2}}{R} \\ & v_{\max }=\sqrt{\left(\frac{R g\left(\sin \theta+\mu_{s} \cos \theta\right)}{\cos \theta-\mu_{s} \sin \theta}\right)} \\ & v_{\max }=\sqrt{\mu r g}=\sqrt{0.8 \times 100 \times 9.8}=28 m / s \end{aligned}$   OR	1 $1 / 2$   1


	a) Statement   Consideration or diagram   Proof (Any method)   b) $v_{2}=-\frac{m_{1} v_{1}}{m_{2}}=-\frac{\left(10 \times 10^{-3} \mathrm{~kg}\right)(800 \mathrm{~m} / \mathrm{s})}{100 \mathrm{~kg}}=-0.08 \mathrm{~m} / \mathrm{s}$   As mass of the bullet is negligible as compared to (rifle ++ man),   $\therefore$ Velocity acquired after 10 shots $=10 \mathrm{v}_{2}=0.8 \mathrm{~m} / \mathrm{s}$   b. The momentum is acquired by the rifleman is $\begin{aligned} & \mathrm{P}=\mathrm{m}_{2} \mathrm{~V}_{2} \\ & =100 \times 0.8=80 \mathrm{kgm} / \mathrm{s} \end{aligned}$   This momentum is acquired in 10 s , therefore the average force $=\Delta p / \Delta t$ $=80 / 5=16 \mathrm{~N}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
34	(i) Directly   (ii) Definition   (iii)Any two methods, advantages or disadvantages	1 mark each
35	(i) Work done, $\mathrm{W}=\mathrm{FS} \cos 60^{\circ}=20 \times 20 \mathrm{X} \cos 60^{\circ}=20 \mathrm{X} 20 \mathrm{X} 1 / 2=$ 200J.   (ii) Conditions for negative work done   (iii)Definition of one joule dimensional formula $\left[\mathbf{M}^{1} \mathbf{L}^{2} \mathbf{T}^{-2}\right]$ OR   According to the definition: Work is done whenever the given conditions are satisfied. (ii) there is a displacement of the body caused by the applied force along the direction of the applied force. No displacement takes place in this case. So, work done by a centripetal force is always zero	$\begin{gathered} 1 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \end{gathered}$

